DARPA Biological Warfare Defense Program

Program Overview

Dr. Jane A. Alexander Deputy Director, Defense Sciences Office

DARPA/DSO, 3701 N. Fairfax Drive, Arlington, VA 22203-1714
Phone: 703-696-2233, Fax: 703-696-3999, JALEXANDER@DARPA.MIL
DARPA: http://www.darpa.mil BWD: http://www.bwd.org

Why Is Biological Warfare Defense a Very High DARPA Priority?

- Troops, ports, airfields, supply depots, etc., are vulnerable to biological attacks
- A number of countries have developed or are developing offensive biological capability
- Most likely first use will be against population centers of ours or our allies
- Small demonstration and threat are probably adequate to immobilize national will with panic unless reasonable defenses are available

New Threats From Advances in Bioengineering

- Bioengineering technology is becoming more widespread and accessible to non-experts
- Bioengineering means possibly new, previously unseen pathogens
- Terrorists do not need the technological sophistication of a military offensive BW program

Time Scales for Development

Consequence Management

- Prototyping with users now
- This program thrust ends in FY99

Sensors

- Developing technologies to transition to prototyping in 3-5 years
- Tissue-based sensors fieldable in 5-10 years

Advanced Diagnostics

- Thrust 1 diagnostic prototypes in 2-5 years
- Thrust 2 develops diagnostics to match Pathogen Countermeasures developments

Pathogen Countermeasures

Developing revolutionary new approaches, available in 8-12 years

Biosensor Program Objectives

	Size/ Weight	Cost	Sensors	False Alarms	Automation	Time
Current	Large/ 20-60 lb	Moderate \$70-150K	Single	Low False Alarms	Man-in-Loop	17 min
DARPA	Tiny/ < 5 lb	Low-Cost < \$5K	Integrated, Multi-Agent; Dead vs. Live	No False Negatives, Few False Positives	Unattended	< 2 min

Shifting the Paradigm of Biodetection Technology

Technology	Advantages		
Direct Gene Identification	 Detects single gene without PCR amplification Uses bacterial RNA (10⁵-10⁸ copies/cell) for identification of species, virulence factors, and viability within minutes 		
Upconverting Phosphors (UCP)/ Giant Magnetoresistance (GMR) Readout	 Eliminates amplification - able to read single bead (single agent, single gene) Dramatically increases sensitivity and decreases detection time. UCP/GMR adapts well to chip technology 		
Structure Based Drug Design/Combinatorial Chemistry	 Replaces antibody in sensors with designer molecules Enables aerogels containing designer molecules for agent capture 		

Shifting the Paradigm of Biodetection Technology (Cont.)

Technology	Advantages		
MS/MS: Miniaturized	Small biodetector as unattended sensor - no fluids required		
Developmental Technologies	Determines live vs. dead spores, and pathogenic vs. non-pathogenic bacteria		
	 Embeds antibodies and receptors in polymeric materials 		

Tissue Based Biosensor for BW/CW Detection

Goal: Develop multifunctional physiological bioassay system(s) utilizing singular and multicellular arrays to provide early warning for chem/bio agents: toxins, nerve agents, bioregulators and other chemicals

Figures of Merit

- Detect both known and previously uncharacterized agents affecting human performance
- Determine physiologically active vs. inactive agents
- Mimic complex multicellular human tissue function
- Small, compact, and robust

q

Nerve Cell CBW Inhibition Pathways

All Known Toxin Pathways Lead to Attenuation of Electrochemical Activity

- Activity (physiology) based biosensor
 - No current capability for the detection of uncharacterized BW/CW agents
- Early warning for BW/CW standard operating procedures
- Assessment of decontamination and neutralization activities
- Indications for medical treatments
 - Exposure level
 - Mechanisms of action

Information Problems

- Managing the consequences of a BW attack is very complex, requiring knowledge not usually available in real-time
- Lack of access to the "few who know"
- Information flood can overload user; needs to be cogent or organized to meet the need
- Course of action is not well known or structured; correct protocols needed

Biological Warfare Defense Anchor Desk Situation Display

Purpose

- Provide an up-to-date electronic watchboard
- Distribute and display data to Command Operations Center and reachback team

Approach

- Monitor the flow of casualties
- Display geographic locations

Benefit

 Accelerate management of a BW incident

٠,						
	Watch Officer	Wind Direction	Weather Data	Contamination Hazard	MOPP Level	
	Maj. Malone	45	A. WBTG 5.5 B. Wind Speed (km/hr) 10 C. Flag Condition		A. MOPP 0 X B. MOPP I C. MOPP II D. MOPP III E. MOPP IV F. Level A	
	Checklist	Comm Plan	Call Signs And Freq.	Other Agencies On Scene	CBIRF Personnel By Zone	
	28. All Casualty Clearing Out of Incident Site Code: Padress From: Hot Zone Coordinator To: S3 Time: 1		CO Centurion CoC CBIRF S3 Moses SCT Homet Medical Stingray Recon Viper SSE Rucksack Decon Ajax Security PittBull		A. Hot Zone 0 B. Warm Zone0 C. Cold Zone 0	
	Casualty Estimation By Type	Patients Processed By Type	CBIRF Casualties	22	20	
	Type 0 0 Type I 0 Type II 0 Type III 0	Type 0 0 Type I 0 Type II 0 Type III 0	A. Chem/Bio Wounded 0 B. Chem/Bio Deaths 0 C. Cvntl Wounded 0 D. Cvntl Deaths 0	19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 1		

- Enhance situational awareness

Operational Impact of BWD Informatics

- Medical protocols down to appropriate echelon of care for correct diagnosis and treatment
- Reachback to experts and <u>useful</u> information
- Identification of BW attack from scattered illness reports
- Readiness information to military commanders of present and projected BWD casualties
- Tie into logistics to get needed treatment/supplies
- Effective BWD training tools for medical personnel

Medical Countermeasures: Program Goals

- Defeat a pathogen's ability to enter the body and reach target tissues
- Target common mechanisms of pathogenesis and functions or structures shared by groups of pathogens
- Modulate the human biological response to pathogens

Heteropolymer Mediated Binding of a Target Pathogen to Red Blood Cells

Conclusions and Implications

- Demonstrated greater than 1 million fold reduction of virus from bloodstream in 1 hour
- Bound heteropolymers have a >2 day lifetime in the circulation and may be useful for short-term passive immunization
- Early experiments show no toxicity and minimal immunogenicity

Modified Mesenchymal Stem Cells Detect Pathogens and Release Products

Why Target Common Pathways?

Targeting common pathways fundamental to the infection or disease process will be:

- Effective against both known and unknown threats
- Difficult to circumvent
- Likely to be effective against bioengineered agents

Common Pathway to Attack Broad Classes of Pathogens: An Example

Blocking the Type III Secretion System

- Type III secretion system used by many bacteria (e.g., plague, salmonella, shigella, *E. coli*)
- Pathogen host cell contact activates virulence genes
- Virulence factors regulated by specialized secretion systems

DARPA Investment in Early Phases

Goal: Rapid diagnosis of infection with real-time identification of responsible organism/toxin

- Thrust 1 (multi-agent, agent specific)
 - Identify organisms rapidly from patients in early stages of infection when pathogen numbers are still low
- Thrust 2 (multi-agent, based on common virulence targets or host responses)
 - Instruments able to identify genes, products, or virulence pathways particular to pathogen classes – not agent specific

Leverage Industrial Emerging Technology in Array-Based Diagnostics

DARPA will:

- Develop and/or procure probes for known BW agents
- Develop probes for common virulence pathways
- Functionalize probes for use on BW arrays
- Demonstrate prototype instruments

DARPA Biological Warfare Defense Program

